Hamilton Paths in Dominating Graphs of Trees and Cycles
نویسندگان
چکیده
The dominating graph of a H has as its vertices all sets H, with an edge between two if one can be obtained from the other by addition or deletion single vertex H. In this paper we prove that any tree Hamilton path. We also show how result about binary strings leads to proof cycle on n path and only is not multiple 4.
منابع مشابه
Characterization of signed paths and cycles admitting minus dominating function
If G = (V, E, σ) is a finite signed graph, a function f : V → {−1, 0, 1} is a minusdominating function (MDF) of G if f(u) +summation over all vertices v∈N(u) of σ(uv)f(v) ≥ 1 for all u ∈ V . In this paper we characterize signed paths and cycles admitting an MDF.
متن کاملConnected dominating set in graphs without long paths and cycles
The ratio of the connected domination number, γc, and the domination number, γ, is strictly bounded from above by 3. It was shown by Zverovich that for every connected (P5, C5)-free graph, γc = γ. In this paper, we investigate the interdependence of γ and γc in the class of (Pk, Ck)-free graphs, for k ≥ 6. We prove that for every connected (P6, C6)-free graph, γc ≤ γ+1 holds, and there is a fam...
متن کاملHamilton cycles and paths in vertex-transitive graphs - Current directions
In this article current directions in solving Lovász’s problem about the existence of Hamilton cycles and paths in connected vertex-transitive graphs are given. © 2009 Elsevier B.V. All rights reserved. 1. Historical motivation In 1969, Lovász [59] asked whether every finite connected vertex-transitive graph has a Hamilton path, that is, a simple path going through all vertices, thus tying toge...
متن کاملApproximately Counting Hamilton Paths and Cycles in Dense Graphs
We describe fully polynomial randomized approximation schemes for the problems of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree (g + e)n, for any fixed e > 0. We show that the exact counting problems are #P-complete. We also describe fully polynomial randomized approximation schemes for counting paths and cycles of all sizes in such graphs.
متن کاملTopological paths, cycles and spanning trees in infinite graphs
We study topological versions of paths, cycles and spanning trees in infinite graphs with ends that allow more comprehensive generalizations of finite results than their standard notions. For some graphs it turns out that best results are obtained not for the standard space consisting of the graph and all its ends, but for one where only its topological ends are added as new points, while rays ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2022
ISSN: ['1435-5914', '0911-0119']
DOI: https://doi.org/10.1007/s00373-022-02579-8